Common misconceptions about data analysis and statistics

Posted: February 2, 2016 in Uncategorized

Ideally, any experienced investigator with the right tools should be able to reproduce a finding published in a peer-reviewed biomedical science journal. In fact, the reproducibility of a large percentage of published findings has been questioned. Undoubtedly, there are many reasons for this, but one reason maybe that investigators fool themselves due to a poor understanding of statistical concepts. In particular, investigators often make these mistakes: 1. P-Hacking. This is when you reanalyze a data set in many different ways, or perhaps reanalyze with additional replicates, until you get the result you want. 2. Overemphasis on P values rather than on the actual size of the observed effect. 3. Overuse of statistical hypothesis testing, and being seduced by the word “significant”. 4. Overreliance on standard errors, which are often misunderstood.

Sourced through from:

See on Scoop.itWriting, Research, Applied Thinking and Applied Theory: Solutions with Interesting Implications, Problem Solving, Teaching and Research driven solutions


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s